
Automated refactoring

Tom Rochette <tom.rochette@coreteks.org>

February 6, 2021 9686e64b

Automated refactoring

0.1 Context

0.2 Learned in this study

0.3 Things to explore

	Abstraction level assignment ((semi-)automatically assign an abstract level to a function such that abstraction levels are respected, use similar abstraction levels in a function)

	Is there any way to think about refactoring in a way that it is applied optimally?

	Is a pass system the most optimal way to do refactoring? It would potentially require the CFG/DFG to be recomputed every time a function is refactored

1 Overview

One of the goal of code refactoring is to reduce the amount of duplicated code such that it is easier to make changes in a single place rather than make the same change at multiple places.

Another goal of refactoring is to promote code reuse and abstraction.

As a software project matures, its low level functions should require to be changed rarely while higher level features relying on those lower level functions change more often. This would be similar to assembly language changing very rarely compared to higher level languages.

2 What do programmers do to improve code?

(tentatively sorted from easiest to automate to hardest)

	Detect and fix defects

	Invalid syntax

	Incorrect logic

	Use of proper types

	Remove dead code

	Define and follow code style standard

	Use more appropriate data structures for the given use cases

	Reduce code complexity

	Law of Demeter

	Limit on functions/methods line count

	Cyclomatic complexity

	Create test cases to ensure code stability during changes

	Refactor improper architecture

	Properly define classes responsibilities

	Properly define classes collaborators

	Reduce coupling

	Write code in terms of pre/post-conditions and return as soon as possible

2.1 Standard operations

	Remove deprecated code

	Update code relying on deprecated/obsolete APIs

	Simplify logic

	Extract string to resource file

2.2 Classical refactoring methods

	Extract method

	Pull up method

	Form template method

	Substitute algorithm

2.3 Regular refactoring

	Pyramid logic to precondition testing

	Extraction of repetitive conditions

	Restructuring of a function into multiple functions (convert a 100 lines function into 20x 5 liners)

	The difficulty here is to give significant name to the newly created functions

	Abstract existing code through parameter instantiation (pass a parameter instead of using a hard-coded value)

	Condition rewriting: Inverse the existing condition

	Extraction of valid points of entry

	All files are executed to test if they compute anything (executable code or only function declaration/library?)

	Files that may execute code may not have the necessary deep dependencies available, which may make it possible to determine they are not a valid point of entry

	Dependency extraction may make it possible to determine the most likely call points

	Computation/algorithm/implementation extraction

	Notify programmer when modifying code that has clones

	Check variable safety (against injection)

	Notify programmer of operations that need to be done due to a change initiated by him (e.g., function renaming, new function parameter, different return type, etc.)

	Abstraction level assignment

2.4 High level

	Code restructuring (namespacing/directory structure/file location)

2.5 Rule-based refactoring

	Law of Demeter

	Maximum functions/methods line count

	Maximum cyclomatic complexity

	Maximum parameter count of functions/methods

	Creation of classes for complex return types (prevent returning tuples or arrays)

2.6 Extract method

	Extract loop content (processing on a single item)

	Extract conditions block (logic specific to a state)

3 See also

	Clone detection

4 References

	https://www.jetbrains.com/resharper/features/code_refactoring.html

	https://en.wikipedia.org/wiki/Code_refactoring

	http://autorefactor.org/

	http://refactoring.com/

	Zanoni, Francesco Duplicated Code Refactoring Advisor (DCRA): a tool aimed at suggesting the best refactoring techniques of Java code clones

EPUB/nav.xhtml

Automated refactoring

		Automated refactoring		0.1 Context

		0.2 Learned in this study

		0.3 Things to explore

		1 Overview

		2 What do programmers do to improve code?		2.1 Standard operations

		2.2 Classical refactoring methods

		2.3 Regular refactoring

		2.4 High level

		2.5 Rule-based refactoring

		2.6 Extract method

		3 See also

		4 References

