Automatic template extraction

Tom Rochette <tom.rochette@Qcoreteks.org>

December 21, 2025 — 77elb28a

0.1 Context
0.2 Learned in this study
0.3 Things to explore

e To extract patterns, group them by starting character, then test how many have the same following
character

e Grammar induction

e Compression

— Compression can be a tool for automatic template extraction, however we would most likely want
to priority semantics of the extracted template over better compression

o Diff/match/patch

e Fragment extraction, then wildcard pattern generation

o Lexer-like that will replace a whole sequence if it is already in the grammar instead of doing character
by character replacement like sequitur

1 Overview

o Extract textual templates from any language (basically tries to find repetitions/patterns)
o Min/max length (characters)

e Discovery of syntax

o Hierarchical/meta extraction

2 Example

<...> is a placeholder (can be replaced/is variable)

2.1 If extraction

3 Prototype ideas/pseudo-code

o Create a dictionary of all seen characters

e Create a dictionary of characters -> index

o Define some sort of relative threshold for which to ignore patterns
e You have a single string, you want to extract patterns out of it

e You have two strings, you want to extract patterns out of them

4 Questions

» How to extract simple constructs such as if/elseif/else/while/do/for /foreach?


https://github.com/tomzx/blog.tomrochette.com-content/blob/77e1b28a/agi/automatic-template-extraction/article.md

How to compress aaaabbbb into an expanding aCb -> aaCbb -> aaaCbbb -> aaaabbbb vs AB ->
aaaaB -> aaaabbbb
— aaaabbbb -> aaaCbbb -> aaDbb -> akEb -> F

x* C:=ab

x* D:=aCb
* E :=aDb
x* F := aEb
x C:= aCb

-> This is a context-free grammar
Do we want to prioritize short rules such as S -> Sa such that they can be repeated many times, or
rules that contains a lot of symbols such as S -> aSa
— Probably want to minimize the number of rules/productions
— Probably want to minimize the rule length
From ["1]
— pl: no pair of adjacent symbols appears more than once in the grammar;
— p2: every rule is used more than once.
How can we prefer public function <>(<>) {<>} over } public function <>(<>) {7
— If we refer to an explicit grammar, we can give more weight to the first one because it is likely a
construct /production in the grammar, while the second one is the concatenation of two productions

See also

References

http://www.sequitur.info/

Identifying Hierarchical Structure in Sequences: A linear-time algorithm
https://en.wikipedia.org/wiki/Three-address code
https://en.wikipedia.org/wiki/Optimizing_ compiler
https://en.wikipedia.org/wiki/Intermediate_ representation
https://en.wikipedia.org/wiki/Abstract_syntax_ tree


http://www.jair.org/media/374/live-374-1630-jair.pdf

	Context
	Learned in this study
	Things to explore
	Overview
	Example
	If extraction

	Prototype ideas/pseudo-code
	Questions
	See also
	References

