
Flemming Nielson - Principles of Program Analysis -
1999

Tom Rochette <tom.rochette@coreteks.org>

July 24, 2025 — daae079c

0.1 Context
0.2 Learned in this study
0.3 Things to explore

1 Overview

2 Notes
2.1 Chapter 1 - Introduction
2.2 1.1 The Nature of Program Analysis

• One common theme behind all approaches to program analysis is that in order to remain computable
(tractable?) one can only provide approximate answers

• In general, we expect the program analysis to produce a possibly larger set of possibilities than what
will ever happen during execution of the program

• All program analyses should be semantics based: this means that the information obtained from the
analysis can be proved to be safe (or correct) with respect to a semantics of the programming language

• Program analysis should not be semantics direct: this would mean that the structure of the program
analysis should reflect the structure of the semantics

2.3 1.2 Setting the Scene
2.4 Reaching Definitions Analysis

• An assignment (called a definition in the classical literature) of the form [x := a]` may reach a certain
program point (typically the entry or exit of an elementary block) if there is an execution of the program
where x was last assigned a value at ` when the program point is reached

2.5 Chapter 2 - Data Flow Analysis
• Classical data flow analyses:

– Available expressions
– Reaching definitions
– Very busy expressions
– Live variables

1

https://github.com/tomzx/blog.tomrochette.com-content/blob/daae079c/agi/books/flemming-nielson-principles-of-program-analysis/article.md


2.6 2.1 Intraprocedural Analysis
2.6.1 Initial and final labels

• init : Stmt→ Lab
– Returns the initial label of a statement

• final : Stmt→ P(Lab)
– Returns the set of final labels in a statement

2.6.2 Blocks

• blocks : Stmt→ P(Blocks)
– Blocks is the set of statements, or elementary blocks

• labels : Stmt→ P(Lab)
– The set of labels occurring in a program

• init(S) ∈ labels(S) and final(S) ⊆ labels(S)

2.6.3 Flows and reverse flows

• flow : Stmt→ P(Lab× Lab)
– The set of couples representing transitions between labels

• flowR : Stmt→ P(Lab× Lab)
– The reverse flow
– flowR(S) : {(`, `′)|(`′, `) ∈ flow(S)}

2.6.4 The program of interest

• S∗: the program that we are analysing
• Lab∗: the labels (labels(S∗)) appearing in S∗
• Var∗: the variables (FV (S∗)) appearing in S∗
• Blocks∗: the elementary blocks (blocks(S∗)) occurring in S∗
• AExp∗: the set of non-trivial arithmetic subexpressions in S∗. An expression is trivial if it is a single

variable or constant

2.7 2.1.1 Available Expressions Analysis
• For each program point, which expressions must have already been computed, and not later modified,

on all paths to the program point
• An expression is killed in a block if any of the variables used in the expression are modified in the block
• A generated expression is an expression that is evaluated in the block and where none of the variables

used in the expression are later modified in the block
• We are interested in the largest sets satisfying the equation for AEentry

2.8 2.1.2 Reaching Definitions Analysis
• For each program point, which assigments may have been made and not overwritten, when program

execution reaches this point along some path
• An assignment is destroyed if the block assigns a new value to the variable
• We are interested in the smallest sets satisfying the equation for RDentry

2.9 2.1.3 Very Busy Expressions Analysis
• An expression is very busy at the exit from a label if, no matter what path is taken from the label, the

expression must always be used before any of the variables occurring in it are redefined
• (The aim of the Very Busy Expressions Analysis is to determine) For each program point, which

expressions must be very busy at the exit from the point

2



• We are interested in the largest sets satisfying the equation for V Bexit

2.10 2.1.4 Live Variables Analysis
• A variable is live at the exit from a label if there exists a path from the label to a use of the variable

that does not re-define the variable
• (The Live Variables Analysis will determine) For each program point, which variables may be live at

the exit from the point
• This analysis might be used as the basis for Dead Code Elimination
• We are interested in the smallest sets satisfying the equation for LVexit

2.11 2.1.5 Derived Data Flow Information
• Use-Definition chains or ud-chains: Links that, for each use of a variable, associate all assignments that

reach that use
• Definition-Use chains or du-chains: Links that, for each assignment, associate all uses
• One application of ud- and du-chains is for Dead Code Elimination
• Another application is in Code Motion (moving code around)

2.12 2.6 Shape Analysis
• Shape Analysis will allow us to statically detect errors like deferencing a nil-pointer

3 See also

4 References
• Nielson, Flemming, Hanne R. Nielson, and Chris Hankin. Principles of program analysis. Springer,

1999.

3


	Context
	Learned in this study
	Things to explore
	Overview
	Notes
	Chapter 1 - Introduction
	1.1 The Nature of Program Analysis
	1.2 Setting the Scene
	Reaching Definitions Analysis
	Chapter 2 - Data Flow Analysis
	2.1 Intraprocedural Analysis
	Initial and final labels
	Blocks
	Flows and reverse flows
	The program of interest

	2.1.1 Available Expressions Analysis
	2.1.2 Reaching Definitions Analysis
	2.1.3 Very Busy Expressions Analysis
	2.1.4 Live Variables Analysis
	2.1.5 Derived Data Flow Information
	2.6 Shape Analysis

	See also
	References

