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0.1 Context
0.2 Learned in this study
0.3 Things to explore

1 Overview

2 Notes
2.1 Chapter 1 - Introduction
2.2 1.1 The Nature of Program Analysis

• One common theme behind all approaches to program analysis is that in order to remain computable
(tractable?) one can only provide approximate answers

• In general, we expect the program analysis to produce a possibly larger set of possibilities than what
will ever happen during execution of the program

• All program analyses should be semantics based: this means that the information obtained from the
analysis can be proved to be safe (or correct) with respect to a semantics of the programming language

• Program analysis should not be semantics direct: this would mean that the structure of the program
analysis should reflect the structure of the semantics

2.3 1.2 Setting the Scene
2.4 Reaching Definitions Analysis

• An assignment (called a definition in the classical literature) of the form [x := a]` may reach a certain
program point (typically the entry or exit of an elementary block) if there is an execution of the program
where x was last assigned a value at ` when the program point is reached

2.5 Chapter 2 - Data Flow Analysis
• Classical data flow analyses:

– Available expressions
– Reaching definitions
– Very busy expressions
– Live variables
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2.6 2.1 Intraprocedural Analysis
2.6.1 Initial and final labels

• init : Stmt→ Lab
– Returns the initial label of a statement

• final : Stmt→ P(Lab)
– Returns the set of final labels in a statement

2.6.2 Blocks

• blocks : Stmt→ P(Blocks)
– Blocks is the set of statements, or elementary blocks

• labels : Stmt→ P(Lab)
– The set of labels occurring in a program

• init(S) ∈ labels(S) and final(S) ⊆ labels(S)

2.6.3 Flows and reverse flows

• flow : Stmt→ P(Lab× Lab)
– The set of couples representing transitions between labels

• flowR : Stmt→ P(Lab× Lab)
– The reverse flow
– flowR(S) : {(`, `′)|(`′, `) ∈ flow(S)}

2.6.4 The program of interest

• S∗: the program that we are analysing
• Lab∗: the labels (labels(S∗)) appearing in S∗
• Var∗: the variables (FV (S∗)) appearing in S∗
• Blocks∗: the elementary blocks (blocks(S∗)) occurring in S∗
• AExp∗: the set of non-trivial arithmetic subexpressions in S∗. An expression is trivial if it is a single

variable or constant

2.7 2.1.1 Available Expressions Analysis
• For each program point, which expressions must have already been computed, and not later modified,

on all paths to the program point
• An expression is killed in a block if any of the variables used in the expression are modified in the block
• A generated expression is an expression that is evaluated in the block and where none of the variables

used in the expression are later modified in the block
• We are interested in the largest sets satisfying the equation for AEentry

2.8 2.1.2 Reaching Definitions Analysis
• For each program point, which assigments may have been made and not overwritten, when program

execution reaches this point along some path
• An assignment is destroyed if the block assigns a new value to the variable
• We are interested in the smallest sets satisfying the equation for RDentry

2.9 2.1.3 Very Busy Expressions Analysis
• An expression is very busy at the exit from a label if, no matter what path is taken from the label, the

expression must always be used before any of the variables occurring in it are redefined
• (The aim of the Very Busy Expressions Analysis is to determine) For each program point, which

expressions must be very busy at the exit from the point
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• We are interested in the largest sets satisfying the equation for V Bexit

2.10 2.1.4 Live Variables Analysis
• A variable is live at the exit from a label if there exists a path from the label to a use of the variable

that does not re-define the variable
• (The Live Variables Analysis will determine) For each program point, which variables may be live at

the exit from the point
• This analysis might be used as the basis for Dead Code Elimination
• We are interested in the smallest sets satisfying the equation for LVexit

2.11 2.1.5 Derived Data Flow Information
• Use-Definition chains or ud-chains: Links that, for each use of a variable, associate all assignments that

reach that use
• Definition-Use chains or du-chains: Links that, for each assignment, associate all uses
• One application of ud- and du-chains is for Dead Code Elimination
• Another application is in Code Motion (moving code around)

2.12 2.6 Shape Analysis
• Shape Analysis will allow us to statically detect errors like deferencing a nil-pointer

3 See also

4 References
• Nielson, Flemming, Hanne R. Nielson, and Chris Hankin. Principles of program analysis. Springer,

1999.
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