0.1
0.2

0.3

2.2

Alan W. Biermann - Approaches to Automatic
Programming

Tom Rochette <tom.rochette@coreteks.org>

December 21, 2025 — 77el1b28a

Context

Learned in this study

When discussing with someone else, we slowly construct a context as the discussion goes on. When a
discussion thread finishes, this context slowly fades away to give place to the construction of a new
context.

Things to explore

Is building a set of inductive/constructive examples more likely to properly induce a program synthesizer
toward the appropriate program?

What is the maximal size of a function such an could generate?

How complex are the functions that can be generated? Can it handle recursive functions?

Overview

Notes

2 Extensions to Traditional Automatic Programming Methods

The same patterns seem to appear again and aagin in the code (of traditional compiled languages)
The development of higher level languages has largely been involved with discovering these patterns
and designing constructs that implement them automatically
Three kinds of patterns and languages that save the user from having to code them by hand:

— DO-loops (or FOR-loops)

— searching with automatic backtracking

— the representation and handling of certain mathematical entities such as sets and relations in some

higher level languages

2.2 Higher Level Languages

Efficient compilation of code can be extremely difficult because the constructs of the language differ so
greatly from the hardware capabilities of the machine

For example, sets can be represented as linear linked lists, binary trees, bit strings, hash tables, fixed
length arrays, and others, and the choice of data structure greatly affects the efficiency of the program
Ordinarily these decisions concerning representation would be made by the programmer, who knows
the nature of his data and how they should be ordered and accessed

The higher level language compiler must either make arbitrary decisions at the risk of terrible performance
or gather information about the usage of each data structure and attempt to make optimum decisions


https://github.com/tomzx/blog.tomrochette.com-content/blob/77e1b28a/agi/papers/alan-biermann-approaches-to-automatic-programming/article.md

2.3
2.4

2.5

Low has written a compiler for a subset of SAIL that also makes use of statement execution counts
obtained by running the program

Higher level languages take the user one step farther away from the machine, enabling him to write
programs more quickly, more concisely and more reliably

Higher level languages will probably be successful to the extent that they embody the structure and
processing that fit the user’s problems and the user’s concept of his problems

These languages usually are considerably less computationally efficient than more traditional languages
because their processors are not able to utilize completely special domain-dependent information in the
way that a human coder could

3 Program Synthesis from Examples

3.1 Introduction

Many a programmer has wished for a system that would read in a few examples of the desired program
behavior and automatically create that program
The synthesis task itself from weak input information is incredibly difficult
The program synthesizer could attempt to do its job by enumerating the set of all possible programs in
the language in order of increasing length, testing each one to see if it is capable of the desired behavior
When it finds such a program, it prints it out as its answer and halts
We know that the correct answer will exist somewhere in the enumeration so that it will be found
eventually
But this strategy has a severe pitfall because it is not possible to tell for an arbitrary program whether
or not it can produce the desired behavior
Since the halting problem for an arbitrary program on given data is undecidable, one cannot tell what
the program might print out, since one cannot tell whether it will even halt
This problem cannot, in general, be avoided, so that we have a theorem:

— The programs for the partial recursive functions cannot be generated from samples of input-output

behavior

The only way this strategy can be made to work is to enumerate a subset of the partial recursive
functions for which the halting problem is solvable or to allow for a partial solution to the halting
problem by limiting the number of steps a program may complete before it halts
Suppose the solution by enumeration method can be made to work. It is still possible that the
system might produce a wrong answer because some program that precedes the correct answer in the
enumeration might be able to complete the given examples
The severest difficulty with the solution by enumeration is the extreme cost of the enumeration
The target program in (the current example) would be beyond the billionth program in most enumer-
ations, meaning that a great amount of time might pass before even this trivial program could be
found
Therefore, the task of program synthesis from examples is essentially intractable unless these problems
can be avoided
Two methods for making the approach feasible:

— Limit the class of synthesizable programs

— Include intermediate information about how each output is obtained from its corresponding input

3.2 The Method

A reasonable technique for generating programs from examples of their behavior executes the following
two steps:
— For each example input X; and its associated output Y;, determine the sequence S; of operations
required to convert X; to Y;
— Find a program that executes each required sequence of operations .S; when given its associated
input X;
The discovery of acceptable sequences S; can involve an astronomical amount of enumeration



2.6

2.7
2.8

2.9

There may be many sequences S; that convert X; to Y; and a method must be found for discovering
which sequence to use for each i.

3.6 Discussion

Program construction processes have been speeded up sufficiently through the use of enumeration
pruning, limiting assumptions on the class of programs being synthesized, and user-specified example
calculations so that programs of practical size can be created automatically
The approach (described) has the following advantages:
— The user has no need to learn traditional language syntax
— The user has direct visual contact with his data structures and can manipulate them in an extremely
natural manner with his hands
Major disadvantages of the approach are:
— The display terminals are not large enough to display easily large or multidimensional data
structures
— The correctness of automatically generated programs is not always easy to determine
The “trace” of the computation can be efficiently constructed for large classes of functions from the
structures of the input and output lists
Furthermore, the programs can be built from the traces almost algorithmically with little or no searching

4 Synthesis from Formal Input-Output Specifications

4.1 Introduction

Rather than giving examples of the desired program behavior, it may be preferable to specify precisely
the required input-output characteristics and have the program automatically generate from these

4.3 Problem Reduction Methods

P{A}Q means that if assertions P are true and program A is executed to halt, then Q will be true
The program synthesis problem then can be stated: Given input specification I and output specification
G, find A such that I{A}G

A typical reduction step would be to divide A into two segments Al and A2 and attempt to construct
A1l and A2 separately

A set of intermediate specification Q are determined and the two problems I{A1}Q and Q{A2}G are
attacked separately

The Buchanan and Luckham approach assumes that the system has a large amount of programming
knowledge in the form of inference rules. The system also needs domain specific information, called
frame information

2.10 5 Translation of Natural Language Commands

2.11 5.2 Syntatic Analysis

Systemic grammars hierarchically decompose utterances into three basic classes:
— clauses
— groups
— words
Each sentence is broken down into one or more clauses, clauses are primarily made up of groups, and
groups are primarily composed of words
There are four types of groups:
— noun
— verb
— preposition
— adjective



2.12
2.13

2.14

2.15

6 Heuristic Knowledge-Based Algorithm Synthesis

6.1 Introduction

A program synthesis is said to be sound if the program produced is guaranteed to meet the specifications
input to the system
A system is said to be complete if it is capable of producing every possible program over the domain of
interest (usually the partial recursive functions)
It is desired that the system should have

— programming knowledge such as how to declare data structures, build loops and branches, and so

forth

— problem domain knowledge such as what are the significant variables and how are they related
debugging knowledge such as how to discover and remove the cause of a discrepancy between
program performance and specification
knowledge of the user such as what information to expect from him, what information to send
him, and how to converse with him in his own language
A heursitic program will be defined as a program whose input-output characteristics are not easily
specified (except perhaps by paraphrasing the program itself)
While the program synthesizer using heuristics might produce false starts, try various ideas, modify
partial solutions, and erase and begin again, it is hoped that it can slowly converge to a reasonable
solution, particularly if it can work continuously in an interaction with a human being

6.2 The Major Phases of Processing

Balzer has described the automatic programming process as being divided into four major phases:

— problem acquisition when the system interacts with the user to build a model of the problem
domain and the problem to be solved

— process transformation when the problem-relevant portions of the model are sifted out to obtain
an efficient representation for problem solution

— model verification when testing and debugging are done to check whether the abstracted model is
correct

— automatic coding when the program is actually generated

6.3 Actors, Beings, Frames, and Others

Two kinds of modularity:

— Modules of knowledge

— Modules of programming
Modules of knowledge should have a body of information that can be referred to (arrays have dimensions,
they may have a type, a declaration may be required in the program, arrays are sometimes initialized
at the beginning of a program, they are scanned using nested FOR loops, etc.)
Modules of knowledge must necessarily have default values (things that are automatically assumed to
be true)
Programming modules composed of relatively independent entities, which activate themselves and which
send and receive information without prompting
The control structure of traditional large program with its well-defined hierarchy of subroutines is being
abandoned and being replaced by a kind of democracy of routines
Each routine has knowledge about what it can do, what it needs to know, when it can function, how
much work it may have to do, what other routines may be able to help it, and other things (this sounds
a lot like OOP, but it is not)
Lenat speaks of a “community of experts,” and if a problem is made available to them, each one comes
forth to contribute knowledge and help if he is able
Instead of an individual routine receiving x and sending back a value f(x), the whole group of routines
might receive the request: Does anyone know anything about “adding”?
Several routines might respond



The request may have to be followed with more information until one routine sees its own applicability
and takes control

The attractions of this type of programming are many. It enables the programmer to delay decisions
about the control structure until knowledge modules are being constructed and to base control decisions
on the contents of these individual modules (1 see this as being able to choose between various sorting
algorithms, it’s interesting, but you generally have a preference over which one you want to use)

It makes it possible to design individual modules without as much concern for their effect on the rest of
the system (that is already the case when you write a couple of functions that are never called... T
believe the idea here is more about planning for the future, than writing code for current needs)

The problem with such code, of course, is that upon being given a task to do, the group of routines
may be contented to sit there and send messages back and forth without ever making any progress

2.16 6.4 On the Development of Knowledge about Knowledge

The study of knowledge:

— how it is represented

— how it is acquired

— manipulated
accessed

— how it is used to create programs
The most important problem to be addressed is the representation problem: How is knowledge to be
represented?

— Facts could be stored in the machine in terms of tables, property lists, semantic nets, formal logic

axioms, executable programs, and many other forms

One might ask how much knowledge is required to do a particular task

— The required amount of knowledge could be measured in terms of numbers of facts or perhaps

number of beings

Another recent interest is the study of approximate knowledge and its use and modification
Sussman has his system propose a program to solve a problem, even though the program may not be at
all correct. Then his system modifies the first approximation until it converges on a solution
How is knowledge about knowledge to be obtained? The answer from the artificial intelligence community
seems to be unanimous: One should study examples
One should look sequentially at how several similar programs might be produced, how a class of related
programs might be produced, and eventually how the synthesis capability might be extended to other
classes of programs (produce solution specific programs, then indicate what may be generalized)

2.17 6.5 Summary

The goals of the designers of these systems are ambitious:
— to build in a natural language understanding and generation ability
— to incorporate a model-building function and non-trivial problem solving abilities
— to include learning and inductive abilities

2.18 7 Comments

An examination of the literature seems to indicate that there are exactly three basic processes that a
system can use in obtaining the desired program:

— The system can be directly given the program or information from which the program can be
directly built. Thus the program might be typed in by the user in a language that can be directly
converted to the target program, or the target program may already exist in a library

— The system may have to enumerate from the set of all possible programs, from the set of all
possible proofs, or from some other space until an acceptable answer is found

— The system may be able to build the desired program by modifying and combining known programs



e Research in automatic programming involves a study of the languages of the human mind, the languages
of machines, and the process of translating between the two

e This author views the main task in automatic programming to be the discovery of the nature of these
languages and the clever implementation of the three given processes to do the translation

3 See also

4 References

o d0i:10.1016,/S0065-2458(08)60519-7


http://www.sciencedirect.com/science/article/pii/S0065245808605197

	Context
	Learned in this study
	Things to explore
	Overview
	Notes
	2 Extensions to Traditional Automatic Programming Methods
	2.2 Higher Level Languages
	3 Program Synthesis from Examples
	3.1 Introduction
	3.2 The Method
	3.6 Discussion
	4 Synthesis from Formal Input-Output Specifications
	4.1 Introduction
	4.3 Problem Reduction Methods
	5 Translation of Natural Language Commands
	5.2 Syntatic Analysis
	6 Heuristic Knowledge-Based Algorithm Synthesis
	6.1 Introduction
	6.2 The Major Phases of Processing
	6.3 Actors, Beings, Frames, and Others
	6.4 On the Development of Knowledge about Knowledge
	6.5 Summary
	7 Comments

	See also
	References

