Alan Turing - Systems of Logic Based on Ordinals (1938)

Tom Rochette < tom.rochette@coreteks.org >

August 30, 2025 — 861fb9d0

- 0.1 Context
- 0.2 Learned in this study
- 0.3 Things to explore
- 1 Overview

2 Notes

Mathematical reasoning may be regarded rather schematically as the exercise of a combination of two faculties, which we may call intuition and ingenuity.

Intuition: making spontaneous judgments which are not the result of conscious trains of reasoning. **Ingenuity:** aiding the intuition through suitable arrangements of propositions, and perhaps geometrical figures or drawings.

Let G be an arithmetic formula that is not provable in the system of arithmetic.

Let G_1 be the incomplete formal system of arithmetic with G as one of its axiom.

Based on the Gödel construction, we can apply this ad infinitum: G_1, G_2, G_3, \ldots

Let the system of arithmetic that forms the starting point of this infinite progression be called L. The result of adding G to L is called L_1 , the result of adding G_1 to L_1 is L_2 , and so on. Taken together, the systems in the infinite progression L, L_1 , L_2 , L_3 , ... form a non-constructive logic.

There are a lot of systems in the progression L, L_1, L_2, L_3, \ldots . There is a system that contains the theorems of every one of the systems L_i , where i is a finite ordinal. This system is called L_{ω} (ω being the first transfinite ordinal number).

 L_{ω} is "bigger" than any of the systems L_i in the sense that any L_i considered, L_{ω} includes all of its theorems (but not vice versa).

But even L_{ω} has a true but unprovable G_{ω} . Adding G_{ω} to L_{ω} produces $L_{\omega+1}$. The progression of systems L, $L_1, L_2, L_3, \ldots, L, L_{\omega+1}, L_{\omega+2}, L_{\omega+3}, \ldots$ is an example of an ordinal logic.

2.1 o-machines

Turing introduces a new type of machine which is able to determine, given the description of a machine \mathbf{m} if it is circle-free. In other words, that machine is able to answer to the halting problem.

In the same manner as was demonstrated that no Turing machine can decide if a given Turing machine description number is circle-free, he proves the existence of mathematical problems of the same nature for

o-machines. In other words, no o-machine can decide, of arbitrarily selected o-machine description numbers, which are numbers of circle-free o-machine.

2.2 2. Effective calculability. Abbreviation of treatment

• A function is said to be "effectively calculable" if its values can be found by some purely mehanical process.

3 See also

4 References