
Łukasz Kaiser - Program Search as a Path to Artificial
General Intelligence (2007)

Tom Rochette <tom.rochette@coreteks.org>

January 22, 2017 — 62eede50

0.1 Context
0.2 Learned in this study
0.3 Things to explore

1 Overview
1.1 1 Intelligence and the Search for Programs

• The core of intelligence is neither the knowledge nor the specific method to use it, but the general way
to learn from previous experience

• This is not limited to adopting new knowledge, but also includes learning new ways to use what we
know, extending it by reasoning, and even improving learning methods to learn more efficiently

• We claim that the informal notion of a method for solving certain tasks can be expressed in mathematical
terms as a Turing machine

• To justify this, we use the Church-Turing thesis, the assumption that everything that is computable,
any complex behaviour of a system, can be computed or modelled using only a small set of simple
abstract operations

• The thesis of Church and Turing justifies that any informally understood method for solving a problem
can be defined as an algorithm, a Turing machine that takes the instance of the problem as input and
returns the solution

• We have modeled problem solving as searching for Turing machines with specified properties
• Determining if such a machine exists is of course undecidable and the problem is intractable in general,

but we can make some additional assumptions
– We can assume that we do not only want the machine, but also a proof that it satisfies the formula

and that such a machine with a proof exists
– We will not consider the cases when the problem is not solvable or it cannot be proved that the

solution is correct
• Learning amounts to improving the procedure (of the agent), so that after a number of problem instances

have been solved it will solve other similar instances more efficiently
• The problem we face with such a theoretical solution is that it would not be usable in practice if

implemented in a direct way
– The time required for it to improve to a level of efficiency that would give any tangible results

would be enormous

1.2 2 Theoretical Results
• Let us now consider the Turing machines defined in set theory together with the axioms of set theory

as formalized by Zermelo and Fränkel

1

https://github.com/tomzx/blog.tomrochette.com-content/blob/62eede50/agi/papers/lukasz-kaiser-program-search-as-a-path-to-artificial-general-intelligence/article.md

• Program search problem: Given a formula ϕ(x1, ..., xn) in first order logic on the structure defined above
(TM and ZFC) with free variables x1, ..., xk denoting Turing machines, find a proof of ϕ(m1, ...,mk) for
some Turing machines m1, ...,mk.

• Fact 1: There exists an algorithm that computes the solution to the program search problem if any
solution exists, so given ϕ(x1, ..., xk) it computes m1, ...,mk and the proof of ϕ(m1, ...,mk), assuming
that for some machines such a proof exists.

– Proof: Since Turing machines, programs, and proofs are enumerable and it can be determined
algorithmically whether a sequence of formulas forms a proof of a given claim, we can use the
following algorithm to prove this fact:
1. Set length to 1
2. Enumerate all k-tuples m1, ...,mk of Turing machines shorter than length and all proofs shorter

than length and check if there is any proof among these that proves ϕ(m1, ...,mk)
3. If the correct machines and proof were found, return them, else increase length by one and

return to 2
– This algorithm is denoted as PSP0

1.3 2.1 Program Search in the Standard AI Model
• To be able to construct well-acting agents we have to assume something about the environment, or, at

least, something about its probabilistic behaviour
• One sensible assumption is that the environment, or at least the probability distribution of events, is

driven by some program (TM)
• We want to create an agent that will behave in a worse way than the optimal agent, if one exists, only

for some period of time, and that will later act optimally
• Let our agent store the following internal variables:

– a list of interwoven events and actions called history, intially empty
– a program model that models the environment, initially any short one
– a program actor that models the suspected optimal behaviour of the agent, initially any trivial

program
– two numbers max size and max time, initially set to 1

• We consider a model of the environment m1 to be better than m2 if we can prove that there is an agent
that achieves, using m1, a better assessment than any agent can achieve using m2

• When a new event is encountered
– Append the event to history
– Search for any program smaller than max size that generates history in less time than max time.

Among such environment models, consider only the best ones as defined above, and update model
to be one of the shortest of the best programs

– Search for a proof, shorter than max size, that shows that some program, smaller than max
size and halting on every input, can achieve a better assessment in environment model than the
program actor. In that case, update actor to be one of the shortest of such programs

– Increase max time and max size by one
– Calculate the response of actor to the input event, append the response to history, and output it

• Fact 2: If a Turing machine can describe the behaviour of the environment and there is a provably
optimal agent for this environment, then the presented agent gets assessment smaller than the optimal
one only for some period of time, and behaves optimally afterwards

– If the environment is a program, then after some running time it will generate output that
distinguishes it from any shorter program

– Since we assumed that there is a provably optimal agent, this agent and the proof of its optimality
have some length

– When max size exceeds this length, the variable actor will be set to the optimal program. Therefore,
the agent will start to behave optimally after detecting the correct environment and the necessary
proof

2

1.4 2.2 Self-improving Program Search
• We do not intend to search for any program in particular, but to learn efficient procedures to search for

programs of interest
• Initialize P = PSP0
• Initialize history to an empty sequence
• Divide available resources into two parts and run two processes simultaneously
• Whenever a new instance of a program search problem is received, append it to history
• Main process

– Receives the problem instance, uses P to solve it and returns the solution
• Improvement process

1. Append the formula that describes the problem of creating a program search algorithm more
efficient than P with respect to µ of the history

2. Use P to find a more efficient program search algorithm as defined by the above formula (?)
3. Update P to a new, more efficient version
4. Repeat, starting from (1) with new P and perhaps an extended history

• If we do not want this algorithm to fall in cycles thinking that some program search algorithm P1 is
better than P2 and later, when history changes, deciding the other way, we have to assume that the
definition of efficiency will be monotonic in some way

• If we are not able to make such assumptions, it could be useful to separate the history of instances
received from outside from the self-improvement instances, and use two separate program search
algorithms, one for solving the problems and the second to improve program search

• Fact 3: Let a program search algorithm Q (our goal, the efficient algorithm) be given and assume that
the efficiency relation is such that there is only a bounded number of algorithms that are provably
more efficient than PSP0 and less efficient than Q, with respect to any possible histories. Then, for any
sequence of received instances, the presented algorithm will after some number of steps substitute Q for
its internal variable P and therefore become at least as efficient as Q

1.5 2.3 Discussion of Efficiency Definitions
• After gaining experience on a class of instances in the past, we will normally say that an algorithm is

efficient if it solves the instances from this class and other similar instances fast
• Two instances are similar if one can be transformed into the other using a few simple transformations,

for example by changing some parameters or shifting them in some way
• We can define the level of similarity between two instances as the number of transformations that have

to be applied to get from one instance to the other
– For practical reasons we could assume that if this number is greater than some constant, then the

instances are not similar at all
• We can say that one program search algorithm is more efficient than another with respect to a history

if it is faster on all instances in the history and on all similar instances
• An alternative definition: The weight of an algorithm A with respect to history H is

w(A,H) = Σ{i similar to some j ∈ H}time(A, i) · 2similarity(i,H)

– similarity(i,H): the smallest level of similarity between i and any instance from H
– time(A, i): the time it takes A to solve i

1.6 3 Convenient Model of Computation
• To construct a model, we will concentrate only on two basic operations used in programming, namely

the possibility to define and apply functions and the possibility to create compound data types
• Therefore, in our model we will operate on objects that represent some data, e.g. 1, 2, [T, F], and on

functions like +, ·, and
• To define functions in this model, we write rules telling how one term should change to another, e.g. T

and F → F

3

• In such rules we can use variables, for example, we can write x+ 0→ x
• To avoid terms which do not mean anything, we’ll introduce types, such that, for example, 1 will have

type int and + will have type int, int → int so we will not be allowed to apply it to the boolean value T
• The model we present is known as term rewriting with polymorphic types
• To define the model, we need the following classes, where arity is always a function that assigns a

natural number to each element of the considered set:
– the infinite enumerate set of type variables, denoted α, β, γ
– the finite set Γ of type names with arity, denoted T,R, S
– the infinite enumerable set V of term variables with arity, denoted x, y, z
– the finite set Θ of constructor names with arity, denoted A,B,C
– the finite set Σ of function names with arity, denoted f, g, h

• Types: The set of types is defined inductively as the smallest set G such that
– each type variable α ∈ G
– if T ∈ Γ with arity n and R1, ..., Rn ∈ Γ then T (R1, ..., Rn)
– for any number n and types T1, ..., Tn ∈ G and result type R ∈ G the functional type (T1, ..., Tn →
R) ∈ G

• For example:
– Γ = {booleans, lists, pairs}

∗ where booleans has arity 0, lists has arity 1 and pairs has arity 2
– The example type E of pairs consisting of a boolean value and a list of any other type can be

represented as

E = pairs(booleans, lists(α)) ∈ G

• The set TV ar(T) of type variables occurring in a type T is also defined inductively by TV ar(α) = {α},
TV ar(T (R1, ..., Rn)) = TV ar(R1) ∪ ... ∪ TV ar(Rn) and TV ar(T1, ..., Tn → R) = TV ar(T1) ∪ ... ∪
TV ar(Tn) ∪ TV ar(R) so TV ar(E) = {α}

• The usual intuition behind types is to view them as labeled trees, therefore we introduce the notion of
positions in types

• The set Λ of positions is the set of sequences of positive natural numbers
• By λ ∈ Λ we will denote the empty sequence or the top (root) position in the type
• For a given type T and a position p we either say that p does not exist in T , or define the type at

position p in T (denoted by T |p) in the following inductive way
– λ exists in each type and T |λ = T
– p = (n, q) exists in S = T (R1, ..., Rm) if m ≥ n and q exists in Rn and in such case S|p = Rn|q
– p = (n, q) exists in S = T1, ..., Tm → R if either m ≥ n and q exists in Tn and in such case
S|p = Tn|q, or m+ 1 = n and q exists in R and then S|p = Rq

2 See also

3 References

4

	Context
	Learned in this study
	Things to explore
	Overview
	1 Intelligence and the Search for Programs
	2 Theoretical Results
	2.1 Program Search in the Standard AI Model
	2.2 Self-improving Program Search
	2.3 Discussion of Efficiency Definitions
	3 Convenient Model of Computation

	See also
	References

