Set Relation Language

Tom Rochette tom.rochette@coreteks.org

December 12, 2016 — f270899f

0.1 Notation

- $\mathrm{A}=\{1,2,3\}$
- $\{x \mid x=1$ or $x=2$ or $x=3\}$
- $\{\mathrm{x} \mid \mathrm{P}(\mathrm{x})\}$ (where P is a predicate)

0.2 Tests

Results in a boolean value.

- x memberOf A
- x containedIn A
- x includedIn A
- x elementOf A, x in A, x eo A
- A contains x
- A includes x , A has x
- A subsetOf $\mathrm{B}, \mathrm{A}<=\mathrm{B}$
- A properSubsetOf $\mathrm{B}, \mathrm{A}<\mathrm{B}$
- B supersetOf $\mathrm{A}, \mathrm{B}>=\mathrm{A}$
- B properSupersetOf $\mathrm{A}, \mathrm{B}>\mathrm{A}$

0.3 Queries

- cardinality $(\mathrm{A}), \operatorname{card}(\mathrm{A}),|\mathrm{A}|->$ int (set is seen as a collection of elements)
- subsetCardinality (A), sscard(A) -> int (set is seen as a collection of elements AND sets)

0.4 Operations/Transformations

Results in a Set.

- A union B , union $(\mathrm{A}, \mathrm{B}), \mathrm{A}+\mathrm{B}, \mathrm{A} \mid \mathrm{B}, \mathrm{A} u \mathrm{~B}$
- A intersection B , intersection(A, B), $\mathrm{A} \& \mathrm{~B}, \mathrm{~A}$ i B
- A difference B, difference(A, B), A - B, A B, A d B
- A symmetricDifference B , symmetricDifference(A, B) A xor $\mathrm{B}, \mathrm{A}^{\wedge} \mathrm{B}$, A sd B
- A cartesianProduct B, cartesianProduct(A, B), A cartesian B, A x B, A * B, A cp B
- power A , power(A$), \mathrm{p} \mathrm{A}, \mathrm{A}^{* *}, \mathrm{~A}^{\wedge}, \mathrm{A}^{\wedge} \mathrm{n}$

0.5 Tests on relations

Results in a boolean value.
Consider f a function that maps items from set A to set B .

- surjective(f), $\operatorname{sur}(f)$
- injective(f), inj(f)
- bijective(f), bij(f)

0.6 Uncategorized

- Partial function
- Total function
- Reflexive
- Symmetric
- Antisymmetric
- Transitive
- Surjective
- Injective
- Bijective
- Composition
- Cartesian product
- Membership
- Identity
- Domain
- Range
- Union - Field
- Inverse
- Image
- Preimage

0.7 Ideas

- x Relation y
- Tom isA human
- Tom knows programming
- Tom knows agi? (how do we determine the NOT operation based on relations alone? if there's no relation, then it implies the NOT operator)

1 References

- https://en.wikibooks.org/wiki/Set_Theory/Relations
- https://en.wikibooks.org/wiki/Set_Theory/Sets
- https://en.wikipedia.org/wiki/Set_theory
- https://en.wikipedia.org/wiki/Set-builder_notation

