Learning VS Code source

Tom Rochette <tom.rochette@coreteks.org>

December 21, 2025 — 77elb28a

2018-05-26

Read package. json to discover what packages VS Code depends on
Observe the root directory structure, and more specifically the extensions and src directories which
contain the bulk of the source code
— A lot of the code in the extensions directory appears to be dedicated to programming language
support
* The remainder of the extensions seem to provide functionality for things that aren’t “core” to
vscode, such as configuration-editing, emmet, extension-editing and some color themes
If you look at the .vscode/launch. json, you will find all the tasks that can be executed from within
VS Code debugger. One task of interest is Launch VS Code which will take care of launching VS Code
for us so that we may debug it
— In this file you will also discover that it runs ${workspaceFolder}/scripts/code.bat, which is
the next script we’ll take a look at
In ./scripts/code.bat, we discover that this script will run yarn if the node_modules directory is
missing, download the electron binaries if necessary and call gulp compile if the out directory is
missing, then finally start the electron/vs code binary in the .build/electron directory
We then start to look for common entry points file such as index.ts/js or main.ts/js, for which we
find a match in the src directory
We take a quick look around, trying to find where electron is likely to be instantiated... There’s a lot
of code in src/main. js that would be better elsewhere to make it easier to navigate this file
Close to the bottom of the file we discover the code we are interested in as a call to app.once('ready’,
)
— Once the app is ready, we want to call strc/bootstrap-amd and pass vs/code/electron-main/main
as our entry point (per the signature of the exported function in ./src/bootstrap-amd)
* Here we can go to two places, either src/bootstrap-amd or src/vs/code/electron-main/main
We take a quick peek at both files and we can quickly tell that src/bootstrap-amd is
used mainly to load src/vs/code/electron-main/main which is the file we're going to
be interested in
Once again, we quickly look around src/vs/code/electron-main/main and find that the main logic
is at the bottom of the file
First the command line arguments are parsed
Then services are bootstrapped/instantiated
Finally the CodeApplication is started up
This leads us to look into src/vs/code/electron-main/app.ts
As the file is quite large, we start by skimming through it, looking at the available methods on the
CodeApplication class as well as its properties
Looking at the constructor, we can see that a lot of objects are given to it. We also observe the use of
the @... syntax (those are decorators)
— In this case (and for most constructors), this is how VS Code does service (dependencies) injection
One will also notice that most, if not all parameters have a visibility assigned to it. What this does is
that it will create an associated property in the class as well as assigning the parameter value to this


https://github.com/tomzx/blog.tomrochette.com-content/blob/77e1b28a/learning-vscode-source/article.md

property in the constructor. Thus, instead of writing
you simply write

e Upon its creation, the CodeApplication class will register various event listeners on the electron app
object

e If we remember, in src/vs/code/electron-main/main, after the CodeApplication object is instanti-
ated, we call startup() on it. So, we want to take a look at what that method does

e Without knowing too much about the VS Code source, it appears that we are instantiating an IPC
server (inter-process communication) and then the shared process

e After that is done, we initialize some more services in CodeApplication: :initServices, such as the
update service (which T guess takes care of checking for VS Code updates) and the telemetry (data
about VS Code feature usage)

o We finally get to the point where we’re about to open a window in CodeApplication: : openFirstWindow!

— This leads us to go read the class WindowsManager in src/vs/code/electron-main/windows.ts.
Once again, this file is pretty large, so we want to skim it to see what it contains (functions, classes,
properties, methods)

e There are a few large classes in src/vs/code/electron-main/windows.ts that I'd want to extract to
make the file smaller and simpler (less cognitive load). However, the issue is that those classes are not
declared as exported, and thus are only available in the local file. It would be possible to move these
classes to other files and import them, but by doing so it would also “communicate” that others can use
it, which is what having the classes as not exported prevents, at the cost of making single files larger
and harder to comprehend

e We know that the constructor is first called, then from CodeApplication::openFirstWindow, we see
that WindowsManager: :ready and WindowsManager: :open are both called.

— In the constructor we instantiate the Dialogs class (takes care of open/save dialog windows)
and the WorkspacesManager class (takes care of workspace management, such as open/save)

— In ready event listeners are registered

— In open there is a lot of logic associated with the window finally opening

1.1 Notes

o If you start VS Code using the debug feature, you will not be able to open the Chrome DevTools (at
this moment, 2018-05-26) because only 1 process is allowed to attach to the Chrome DevTools instance,
and that process is the VS Code editor that started the debugged VS Code instance

2 2018-07-08

Today I want to find out how VS Code restores a windows sessions when you start it. Apparently, if you run
it as code ., it will not restore the same set of windows than if you called it simply with code.

e In src/vs/code/electron-main/launch.ts, the LaunchService: :startOpenWindow appears to im-
plement logic based on how many arguments were given. In all cases, we end up doing a call to the
IWindowsMainService: :open method.
— Note that in both cases, the path we're opening is within the args variable, which is passed to the
cli property of the I0penConfiguration object.
e The implementation of IWindowsMainService we are interested in lives in src/vs/code/electron-main/windows.ts.
e In the WindowsManager: : open method, we rapidly discover that the windows that will be opened will
be retrieved in WindowsManager: : getPathsToOpen. In there, we can observe that the windows that
will be opened depend on whether something was passed from the API, we forced an empty window,
we're extracting paths from the cli or we should restore from the previous session.
— If we arrive at this last case, we can see that the logic is to call WindowsManager: : doGetWindowsFromLastSession,
which is pretty self-explanatory, and will retrieve the previous set of windows from the last session.
This is what happens when you start code using code



— In the case where we pass a path, this path is in openConfig.cli._. In this case, the windows
that were previously opened, and part of this.windowsState.openedWindows (where this is a
WindowsManager object)
* Here we wonder how the windowsState.openedWindows state gets restored on VS Code
start. To figure that out, we start at the WindowsManager . constructor method. There we find
this.windowsState = this.stateService.getItem<IWindowsState>(WindowsManager.windowsStateStc
[l { openedWindows: [] };, which states to use get a IWindowState object from the
stateService if one exists or to create an object with no opened windows. If we assume that
this windows state is the same regardless of how we start VS Code, then it is not there that
the difference in opened windows will occur.



	2018-05-26
	Notes

	2018-07-08

