2017-01-13

Tom Rochette <tom.rochette@coreteks.org>

December 21, 2025 — 77elb28a

0.1 Context
0.2 Learned in this study

o Use of Keras

e Use of basic numpy functions (np.asarray, np.zeroes, np.argmax)
o Use of pandas pandas.period_range

e Use of peewee to read from MySQL

o How to create a on-hot vector from a list/set of labels

0.3 Things to explore
1 Problems faced

e Read data from a MySQL database
o Create a list of datetime spaced by a given period
o Initial terrible training/validation accuracy/loss (it was about 10-15% accurate)

2 Overview

Today I worked on what I consider a simple beginner’s problem. The goal is to predict what a person/employee
would do in a day by predicting what he will be doing if sampled every 15 minutes. I have about 40k training
samples to learn from.

I formatted my input data in the following way:
such that, for an entry for 2017-01-13 12:30, I would have the following input vector

My desired output is a label such as “Project X”. However, since I deal with numbers here, the labels have
been converted to numerical identifiers such as “6”. Then, since I want to train my neural network to learn
about categories because the labels are not representing linear values, I convert these labels into one hot
vectors.

The process looks as follow:
Project X -> 6 -> [0,0,0,0,0,0,1]

Since my data comes from a MySQL database, I do not convert the text into a numerical label myself, I
simply use the primary key instead. You'll also notice that the index 0 will likely to always be 0 since MySQL
does not allocate 0 as an auto increment key (it starts at 1). I do not mind losing a single memory space for
the simplicity of dealing with the index right number.

I then built an extremely simple neural network using Keras.

where the input_ dimension is 6 and the output dimension is based on the maximum project id retrieved
from the database.


https://github.com/tomzx/blog.tomrochette.com-content/blob/77e1b28a/machine-learning/daily-log/2017-01-13/article.md

To train it, I decided to use the nadam optimizer with categorical_crossentropy as the loss function
(what I'm trying to optimize). What categorical_crossentropy does here is attempt to reduce the overall
difference between the network predicted output and a given sample, but where the output is generally a
one-hot vector (it could also have been a multi category vector as well if I'm not mistaken).

After training, the accuracy was extremely low (<15%), which was unexpected. What I found particularly
strange was that during training, the training/validation accuracy /loss would always end up being approx-
imately the same, which was an indication that it either had learned it on first epoch, or that it wasn’t
learning.

In order to improve my results, I tried various things:

e Deeper networks

o Larger (breadth) networks

e Changed the activation function used at different layers
e Introduced dropout

The best I was able to get on that day was about 44.7% validation accuracy, which was at least twice better
than what I had originally started with.

3 See also

4 References



	Context
	Learned in this study
	Things to explore
	Problems faced
	Overview
	See also
	References

