
My client-side only AI web application workflow

Tom Rochette <tom.rochette@coreteks.org>

December 21, 2025 — 77e1b28a

Over the past month I’ve started building client-side only AI web applications (e.g., ai-text-editor, a private
ai-language-assistant to teach myself Chinese Mandarin).
I’ve gone with this approach because it lends itself very well to vibe coding with vibe-kanban.
I’ve configured the Dev Server Script option to open the index.html file in my browser and it works
immediately, no need to build assets or start a backend server.
This speeds up iteration cycle considerably.
This approach is also great because it produces a tool that can then be used directly in the browser from any
device, without needing to install anything.
I can run what I built on my phone, on my work computer, one someone else’s computer easily by pointing
them out to the project’s GitHub Pages URL which serves the application and is “production” ready.

I haven’t really picked any frontend libraries or frameworks, just vanilla HTML/CSS/JS.
That is something I need to explore (e.g., react, svelte, solid, tailwind, vue.js, etc.) but for now I want to
keep things simple.

For the past few projects I’ve used Claude Code.
I ask Claude to create the common CLAUDE.md using /init.
Additionally, I ask Claude to maintain a SPEC.md file that describes the features of the application.
In many cases the database relies on the browser’s localStorage API and IndexedDB to store data, which
is sufficient for my needs.
I ask Claude to maintain a DATABASE_SPEC.md file to describe the database schema.
Claude typically goes for a index.html, app.js, and styles.css file structure.
While it is ok for the first few iterations of the project, I usually ask Claude to refactor the code to split it
into multiple files and modules as the codebase grows.
Doing so speeds up some of the iteration process since it doesn’t end up reading large irrelevant chunks of
the file when making edits.
It also makes it easier to review changes since I use the files modified as an indication of whether it worked
on the right part of the codebase.

The main downside of this approach is that generally the app.js file ends up being quite large (e.g., 1000+
lines of code) since it contains all kind of global state and logic.

With this approach I’ve been able to fairly effectively work on small projects (~40 hours of work) and get
something functional out the door that would have taken me weeks and where I’d probably have given up
mid-project due to all kind of minor problems.

1 The template
The template is available as a GitHub repository.

In index.html I have the following code to load llm.js and my application code:

<script src="https://cdn.jsdelivr.net/gh/tomzxforks/llm.js@main/dist/index.min.js"></script>
<script type="module" src="app.js"></script>

1

https://github.com/tomzx/blog.tomrochette.com-content/blob/77e1b28a/my-client-side-only-ai-web-application-work/article.md
https://github.com/TomzxCode/ai-text-editor
https://www.vibekanban.com/
https://github.com/TomzxCode/templates


In app.js I have the following code to configure the LLM options:

const applicationId = "my-ai-application";

function getConfigurationValue(key, defaultValue) {
// Try to get configuration from applicationId key
try {

const appConfig = localStorage.getItem(applicationId);
if (appConfig) {

const config = JSON.parse(appConfig);
if (config && config.hasOwnProperty(key)) {

return config[key];
}

}
} catch (error) {

console.warn(`Error parsing ${applicationId} configuration:`, error);
}

// Fall back to llm-defaults key
try {

const defaultConfig = localStorage.getItem('llm-defaults');
if (defaultConfig) {

const config = JSON.parse(defaultConfig);
if (config && config.hasOwnProperty(key)) {

return config[key];
}

}
} catch (error) {

console.warn('Error parsing llm-defaults configuration:', error);
}

// Use provided default
return defaultValue;

}

const llmOptions = {
service: getConfigurationValue("service", "groq"),
model: getConfigurationValue("model", "openai/gpt-oss-120b"),
extended: true,
apiKey: getConfigurationValue("api_key", "LLM_API_KEY_NOT_SET"),
max_tokens: parseInt(getConfigurationValue("max_tokens", "8192")),

};

I set a key in localStorage called llm-defaults that contains a JSON object with default values for the
LLM service, model, and API key.
For example:

{
"service": "groq",
"model": "openai/gpt-oss-120b",
"api_key": "sk-xxxxxx",
"max_tokens": "8192"

}

This way I can easily change the LLM configuration for all my client-side AI applications by updating this
single localStorage key.

2



If I need to override the configuration for a specific application, I can set another key in localStorage with
the name of the applicationId (e.g., my-ai-application) that contains the specific configuration for that
application.
In the event that neither key is set, the code falls back to hardcoded default values.

2 Notes
The LLM.js I use is forked from themaximalist/llm.js.
The main changes I’ve made was to enable IIFE (Immediately Invoked Function Expression) builds that can
be loaded directly in the browser via a <script> tag instead of using modules.
I also disabled minification since jsdelivr automatically minifies the code if you have min in the filename.

3

https://github.com/TomzxForks/llm.js
https://github.com/themaximalist/llm.js

	The template
	Notes

