My client-side only AI web application workflow

Tom Rochette <tom.rochette@coreteks.org>

October 14, 2025 — 0d6e91b0

Over the past month I've started building client-side only AI web applications (e.g., ai-text-editor, a private
ai-language-assistant to teach myself Chinese Mandarin).

I've gone with this approach because it lends itself very well to vibe coding with vibe-kanban.

I've configured the Dev Server Script option to open the index.html file in my browser and it works
immediately, no need to build assets or start a backend server.

This speeds up iteration cycle considerably.

This approach is also great because it produces a tool that can then be used directly in the browser from any
device, without needing to install anything.

I can run what I built on my phone, on my work computer, one someone else’s computer easily by pointing
them out to the project’s GitHub Pages URL which serves the application and is “production” ready.

I haven’t really picked any frontend libraries or frameworks, just vanilla HTML/CSS/JS.
That is something I need to explore (e.g., react, svelte, solid, tailwind, vue.js, etc.) but for now I want to
keep things simple.

For the past few projects I've used Claude Code.

I ask Claude to create the common CLAUDE.md.

Additionally, I ask Claude to maintain a SPEC.md file that describes the features of the application.

In many cases the database relies on the browser’s localStorage API and IndexedDB to store data, which
is sufficient for my needs.

I ask Claude to maintain a DATABASE_SPEC.md file to describe the database schema.

Claude typically goes for a index.html, app.js, and styles.css file structure.

While it is ok for the first few iterations of the project, I usually ask Claude to refactor the code to split it
into multiple files and modules as the codebase grows.

Doing so speeds up some of the iteration process since it doesn’t end up reading large irrelevant chunks of
the file when making edits.

It also makes it easier to review changes since I use the files modified as an indication of whether it worked
on the right part of the codebase.

The main downside of this approach is that generally the app.js file ends up being quite large (e.g., 1000+
lines of code) since it contains all kind of global state and logic.

With this approach I've been able to fairly effectively work on small projects (~40 hours of work) and get
something functional out the door that would have taken me weeks and where I'd probably have given up
mid-project due to all kind of minor problems.

1 The template

e Use an importmap and javascript modules
e Imports
— llm.js to do LLM calls directly from the browser

<script type="importmap">

{


https://github.com/tomzx/blog.tomrochette.com-content/blob/0d6e91b0/my-client-side-only-ai-web-application-work/article.md
https://github.com/TomzxCode/ai-text-editor
https://www.vibekanban.com/
https://github.com/themaximalist/llm.js

"imports": {
"1lm.js": "https://esm.sh/Q@themaximalist/11lm.js@1.0.17target=node",
¥
}
</script>
<script type="module" src="app.js"></script>



	The template

