
On Designing and Deploying Internet-Scale Services

Tom Rochette <tom.rochette@coreteks.org>

July 24, 2025 — daae079c

• 3 tenets
– Expect failures
– Keep things simple
– Automate everything

• The entire service must be capable of surviving failure without human administrative interaction
• The best way to test the failure path is never to shut the service down normally. Just hard-fail it
• The acid test: is the operations team willing and able to bring down any server in the service at any

time without draining the work load first?
– If they are, then there is synchronous redundancy (no data loss), failure detection, and automatic

take-over
• Large clusters of commodity servers are much less expensive than the small number of large servers

they replace
• Server performance continues to increase much faster than I/O performance, making a small server a

more balanced system for a given amount of disk
• Power consumption scales linearly with servers but cubically with clock frequency, making higher

performance servers more expensive to operate
• A small server affects a smaller proportion of the overall service workload when failing over
• Two factors that make some services less expensive to develop and faster to evolve than most packaged

products are
– the software needs to only target a single internal deployment
– previous versions don’t have to be supported for a decade as is the case for enterprise-targeted

products
• Basic design tenets

– Design for failure
– Implement redundancy and fault recovery
– Depend upon a commodity hardware slice
– Support single-version software
– Enable multi-tenancy

• Each pod should be as close to 100% independent and without interpod correlated failures
• What isn’t tested in production won’t work, so periodically the operations team should a fire drill using

these tools
• If the service-availability risk of a drill is excessively high, then insufficient investment has been made

in the design, development, and testing of the tools
• Some form of throttling or admission control is common at the entry to the service, but there should

also be admission control at all major components boundaries
• The general rule is to attempt to gracefully degrade rather than hard failing and to block entry to the

service before giving uniform poor service to all users
• Partitions should be infinitely-adjustable and fine-grained, and not be bounded by any real world entity

– We recommend using a look-up table at the mid-tier that maps fine-grained entities, typically
users, to the system where their data is managed

• Expect to run in a mixed-version environment. The goal is to run single version software but multiple
versions will be live during rollout and production testing

• Best practices in designing for automation include

1

https://github.com/tomzx/blog.tomrochette.com-content/blob/daae079c/papers/on-designing-and-deploying-internet-scale-services/article.md


– Be restartable and redundant
– Support geo-distribution
– Automatic provisioning and installation
– Configuration and code as a unit
– Manage server roles or personalities rather than servers
– Multi-system failures are common
– Recover at the service level
– Never rely on local storage for non-recoverable information
– Keep deployment simple
– Fail services regularly

• Dependency management
– Expect latency
– Isolate failures
– Use shipping and proven components
– Implement inter-service monitoring and alerting
– Dependent services require the same design point
– Decouple components

• Testing in production is a reality and needs to be part of the quality assurance approach used by all
internet-scale services

• The following rules must be followed
– The production system has to have sufficient redundancy that, in the event of catastrophic new

service failure, state can be quickly recovered
– Data corruption or state-related failures have to be extremely unlikely (functional testing must

first be passing)
– Errors must be detected and the engineering team (rather than operations) must be monitoring

system health of the code in test
– It must be possible to quickly roll back all changes and this roll back must be tested before going

into production
• Big-bang deployments are very dangerous
• We favor deployment mid-day rather than at night
• Some best practices for release cycle and testing include

– Ship often
– Use production data to find problems

∗ A few strategies
· Measurable release criteria
· Tune goals in real time
· Always collect the actual numbers
· Minimize false positives
· Analyze trends
· Make the system health highly visible
· Monitor continuously
· Invest in engineering
· Support version roll-back
· Maintain forward and backward compatibility
· Single-server deployment
· Stress test for load
· Perform capacity and performance testing prior to new releases
· Build and deploy shallowly and iteratively
· Test with real data
· Run system-level acceptance tests
· Test and develop in full environments

• Best practices for hardware selection include
– Use only standard SKUs
– Purchase full racks

2



– Write to hardware abstraction
– Abstract the network and naming

• Make the development team responsible
• Soft delete only
• Track resource allocation
• Make one change at a time
• Make everything configurable
• To be effective, each alert has to represent a problem
• To get alerting levels correct, two metrics can help and are worth tracking

– alerts-to-trouble ticket ratio (with a goal of near one)
– number of systems health issues without corresponding alerts (with a goal of near zero)

• Best practices include
– Instrument everything
– Data is the most valuable asset
– Have a customer view of service
– Instrument for production testing
– Latencies are the toughest problem
– Have sufficient production data

∗ The most important data we’ve relied upon includes
· Use performance counters for all operations
· Audit all operations
· Track all fault tolerance mechanisms
· Track operations against important entities
· Asserts
· Keep historical data

– Configurable logging
– Expose health information for monitoring
– Make all reported errors actionable
– Enable quick diagnosis of production problems

∗ Give enough information to diagnose
∗ Chain of evidence
∗ Debugging in production
∗ Record all significant actions

• Two best practices, a “big red switch” and admission control, need to be tailored to each service
• Support a “big red switch”

– The ability to shed non-critical load in an emergency
• Control admission
• Meter admission

3


