On Designing and Deploying Internet-Scale Services

Tom Rochette <tom.rochette@coreteks.org>

July 24, 2025 — daae079c¢

3 tenets
— Expect failures
— Keep things simple
— Automate everything
The entire service must be capable of surviving failure without human administrative interaction
The best way to test the failure path is never to shut the service down normally. Just hard-fail it
The acid test: is the operations team willing and able to bring down any server in the service at any
time without draining the work load first?
— If they are, then there is synchronous redundancy (no data loss), failure detection, and automatic
take-over
Large clusters of commodity servers are much less expensive than the small number of large servers
they replace
Server performance continues to increase much faster than I/O performance, making a small server a
more balanced system for a given amount of disk
Power consumption scales linearly with servers but cubically with clock frequency, making higher
performance servers more expensive to operate
A small server affects a smaller proportion of the overall service workload when failing over
Two factors that make some services less expensive to develop and faster to evolve than most packaged
products are
— the software needs to only target a single internal deployment
— previous versions don’t have to be supported for a decade as is the case for enterprise-targeted
products
Basic design tenets
— Design for failure
— Implement redundancy and fault recovery
— Depend upon a commodity hardware slice
— Support single-version software
Enable multi-tenancy
Each pod should be as close to 100% independent and without interpod correlated failures
What isn’t tested in production won’t work, so periodically the operations team should a fire drill using
these tools
If the service-availability risk of a drill is excessively high, then insufficient investment has been made
in the design, development, and testing of the tools
Some form of throttling or admission control is common at the entry to the service, but there should
also be admission control at all major components boundaries
The general rule is to attempt to gracefully degrade rather than hard failing and to block entry to the
service before giving uniform poor service to all users
Partitions should be infinitely-adjustable and fine-grained, and not be bounded by any real world entity
— We recommend using a look-up table at the mid-tier that maps fine-grained entities, typically
users, to the system where their data is managed
Expect to run in a mixed-version environment. The goal is to run single version software but multiple
versions will be live during rollout and production testing
Best practices in designing for automation include


https://github.com/tomzx/blog.tomrochette.com-content/blob/daae079c/papers/on-designing-and-deploying-internet-scale-services/article.md

— Be restartable and redundant
— Support geo-distribution
— Automatic provisioning and installation
— Configuration and code as a unit
— Manage server roles or personalities rather than servers
— Multi-system failures are common
— Recover at the service level
— Never rely on local storage for non-recoverable information
— Keep deployment simple
— Fail services regularly
e Dependency management
— Expect latency
— Isolate failures
Use shipping and proven components
— Implement inter-service monitoring and alerting
— Dependent services require the same design point
— Decouple components
e Testing in production is a reality and needs to be part of the quality assurance approach used by all
internet-scale services
e The following rules must be followed
— The production system has to have sufficient redundancy that, in the event of catastrophic new
service failure, state can be quickly recovered
— Data corruption or state-related failures have to be extremely unlikely (functional testing must
first be passing)
— Errors must be detected and the engineering team (rather than operations) must be monitoring
system health of the code in test
— It must be possible to quickly roll back all changes and this roll back must be tested before going
into production
e Big-bang deployments are very dangerous
o We favor deployment mid-day rather than at night
e Some best practices for release cycle and testing include
— Ship often
— Use production data to find problems
x A few strategies
Measurable release criteria
Tune goals in real time
Always collect the actual numbers
Minimize false positives
Analyze trends
Make the system health highly visible
Monitor continuously
Invest in engineering
Support version roll-back
Maintain forward and backward compatibility
Single-server deployment
Stress test for load
Perform capacity and performance testing prior to new releases
Build and deploy shallowly and iteratively
Test with real data
Run system-level acceptance tests
Test and develop in full environments
e Best practices for hardware selection include
— Use only standard SKUs
— Purchase full racks



— Write to hardware abstraction
— Abstract the network and naming
Make the development team responsible
Soft delete only
Track resource allocation
Make one change at a time
Make everything configurable
To be effective, each alert has to represent a problem
To get alerting levels correct, two metrics can help and are worth tracking
— alerts-to-trouble ticket ratio (with a goal of near one)
— number of systems health issues without corresponding alerts (with a goal of near zero)
Best practices include
— Instrument everything
— Data is the most valuable asset
— Have a customer view of service
— Instrument for production testing
— Latencies are the toughest problem
— Have sufficient production data
* The most important data we’ve relied upon includes
- Use performance counters for all operations
Audit all operations
Track all fault tolerance mechanisms
Track operations against important entities
Asserts
- Keep historical data
— Configurable logging
— Expose health information for monitoring
— Make all reported errors actionable
— Enable quick diagnosis of production problems
* Give enough information to diagnose
* Chain of evidence
* Debugging in production
x Record all significant actions
Two best practices, a “big red switch” and admission control, need to be tailored to each service
Support a “big red switch”
— The ability to shed non-critical load in an emergency
Control admission
Meter admission



