
Obfuscator

Tom Rochette <tom.rochette@coreteks.org>

November 2, 2024 — 36c8eb68

0.1 Context
0.2 Learned in this study
0.3 Things to explore

1 Overview
• Encapsulate the application within a .phar
• Use obfuscation (can only obfuscate variables inside function/methods as anything else must remain

with the same name in order to allow for dynamically called methods (or simply do not support such
code))

2 Requirements
• Must not make it easy to extract the original source code
• Must checksum itself for modification
• Should prevent usage by sharing a single license (TBD?)
• Should not be possible to reuse a trial forever in a VM

3 Issues
• Relying on opcode (to act as a binary) probably implies you are dependent on the php version used.

Furthermore, it also means that the extension must be available and enabled for the code to work
• Given the current implementation of opcache, the cache cannot be reused on other machines as it

contains the system ID as part of an opcache file header

4 PHP OPCache
4.1 Header

• OPCACHE

• System ID

• Timestamp

• Checksum

-> zend_accel_load_script (persistent_script, from_memory)

1

https://github.com/tomzx/blog.tomrochette.com-content/blob/36c8eb68/php/obfuscator/article.md


5 Obfuscation
• Replace classes methods with (generated) traits that contain one or many of the classes method
• Compression/optimization by creating variables

5.1 Issues
• Even with obfuscation, PSR0/4 based code is too easy to distinguish (no reason to obfuscate libraries)

5.2 Ideas
• Find some way to transform the original source such that it is in symbiose with a client identifier (and

thus cannot be removed)
– See one-way function

• Obfuscate php built-in functions
• Zend Host ID limited deployment: It appears that Zend Guard allows the software to be limited to run

on only specific “Zend Host” (what are those?)
– Zend Guard Loader is a custom extension? for PHP which requires a licence_path to work

6 Packaging
• Replace variables within functions with obfuscated names
• Concatenate all files into a single file (or bundle of files)

– Pre-process require/include, or do not allow their use (as the files will not be available)
• Randomize file order
• Scramble method order
• Inject junk code

– Insert junk code with encrypted user identification
• Generate a differently scrambled version per download/user

7 See also

8 References
• https://github.com/naneau/php-obfuscator
• https://www.pelock.com/products/autoit-obfuscator
• https://developers.google.com/closure/compiler/
• http://proguard.sourceforge.net/
• http://www.zend.com/en/products/zend-guard

2

https://en.wikipedia.org/wiki/One-way_function

	Context
	Learned in this study
	Things to explore
	Overview
	Requirements
	Issues
	PHP OPCache
	Header

	Obfuscation
	Issues
	Ideas

	Packaging
	See also
	References

