
SQL sync

Tom Rochette <tom.rochette@coreteks.org>

November 2, 2024 — 36c8eb68

0.1 Context
0.2 Learned in this study
0.3 Things to explore

• How should the client inform the server of which tables it wants updates?
• Is it possible to only ask for a partial database considering there might be foreign key relations?
• How to do batched sync instead of a “massive” big synchronization
• How can we only send the appropriate operations to update a row with many large fields so that only

the updated fields are sent to the client?

1 Overview
There is three types of updates:

• Insertion at the end of the table (new IDs)
• Update of existing data

– In order to know we need the data, we’d have to assume that the time is properly synchronized
between devices and has an updated_at column which is using a timestamp field

• Removal of existing data

There are two types of SQL sync we’d like to achieve:

• Server-client relation, where the client will let the server know it has data from ID = 1 up to X
• Distributed, where clients are all communicating with one another in an asynchronous manner and

want to share some sort of state

2 Things we’ll assume
• No schema changes: There will be no change to the structure of the tables, otherwise this would require

to have access to migration scripts.
• No triggers will be executed when updating data

3 Things we want
• Easily server multiple databases through a single endpoint

4 Things we have to consider
• Updated and deleted rows

1

https://github.com/tomzx/blog.tomrochette.com-content/blob/36c8eb68/projects/sql-sync/article.md

– Should we “force” the users to have updated_at/deleted_at columns and to keep the data or
have to go through the whole tables to determine missing IDs

5 Client-Server architecture
Let’s get started with what should be the simplest architecture, a client-server architecture.

In this particular case, we assume that the server is authoritative and that if any schema change were to
occur, the server is the one that will be pushing the schema update to the client and not the other way
around. Furthermore, we’ll assume that the client isn’t writing any data to the table. In other words, it is a
read-only/replication client (also know as master/slave).

First, the server is configured to host a database with any number of tables.

Then, a client is configured to point to this given server in order to establish a connection with it in order to
update its local data.

When the client is configured, it will call the server to inform it it wants to start a synchronization process.

The following sequence diagram represents the communication between a client and a server in the case that
there are only inserts being done on the server data and the client wants to sync this data locally.

sequenceDiagram
Client->>Server: Init
Server-->>Client: OK
Client->>Server: Table A, ID = 23
Client->>Server: Table B, ID = 266
Server->>Client: Table A, Insert ID = 24 -> 44
Server->>Client: Table A, Insert ID = 45 -> 60
Server->>Client: Table A, done
Server->>Client: Table B, done
Client->>Server: Close

This simple case sadly does not cover updates nor deletes.

In order to support updates, we need to have an updated_at column that is updated when the data itself is
updated.

sequenceDiagram
Client->>Server: Init
Server-->>Client: OK
Client->>Server: Table A, ID = 23 AND LAST_TIMESTAMP = 1456940812
Client->>Server: Table B, ID = 266 AND LAST_TIMESTAMP = 1358237225
Server->>Client: Table A, Update ID = [12, 16, 22]
Server->>Client: Table A, Insert ID = 24 -> 44
Server->>Client: Table A, Insert ID = 45 -> 60
Server->>Client: Table A, done
Server->>Client: Table B, Update ID = [123, 234]
Server->>Client: Table B, done
Client->>Server: Close

If the table also supports deleted_at, then it should work in the same fashion as with updated_at. Here,
we could have a setting to determine whether updated_at would be updated on a deleted_at, and if it is
not, then it means that we have to do a separate set of operations for delete operations. The simplest case is
to “force” the users to update their updated_at field when they set one of their rows deleted_at attribute
(so that they both match).

With this simple system it is easy to ask for a delta of the changes that have occurred on the server since the
client last synchronized with it. It does not require any additional tables to support the synchronization

2

process other than having incrementing IDs and updated_at/deleted_at fields.

When the clients want to determine what to send to the server, it will have to obtain the MAX(id) and
the MAX(updated_at) of the table it wants to sync. The client will then provide this information to the
remote server so that the server can then query its own database and build the set of changes that it will be
transmitting to the client.

At this point, this solution means that:

• Removal of data from the database has to be done by setting the updated_at/deleted_at columns to
the time of deletion. If one deletes a row from the table, then we are not aware of this change

One of the biggest challenges with synchronizing removal of rows is that there is no data which can be retrieved
in order to determine the list of rows that have been removed. At best, we can start the synchronization
process of a table by computing the number of existing rows on the client and asking the server if the count
matches. If it does, then no row has been deleted. If it doesn’t, then we have to figure out which rows are
gone. The problem is figuring out this list of rows, since they are no more in the server’s database. Thus,
we’re left with iterating over the database IDs to find when the consecutivy is broken.

It is possible to query SQL and ask for the non-consecutive blocks of IDs using a query such as the following
one:

Source: http://stackoverflow.com/questions/4340793/how-to-find-gaps-in-sequential-numbering-in-mysql

For example, given the following table:

id
3
4
5
6
7
16
17
23
25

The query will return us with:

lValue cValue rValue
null 3 4

6 7 null
null 16 17
16 17 null

null 23 null
null 25 null

An alternative query could be

Source: http://www.xaprb.com/blog/2005/12/06/find-missing-numbers-in-a-sequence-with-sql/

But such query does not return us missing IDs from 1 to X, it only returns us with missing IDs between the
first existing ID to the last existing ID. In our particular case, we’d like to give the query a from-to range
that will be tested and which will let us know the IDs that are missing (that the client will have to remove).

Given we can receive a list of from-to of deleted rows, we should be able to fully update our client.

3

sequenceDiagram
Client->>Server: Init
Server-->>Client: OK
Client->>Server: Table A, ID = 23 AND LAST_TIMESTAMP = 1456940812
Client->>Server: Table B, ID = 266 AND LAST_TIMESTAMP = 1358237225
Server->>Client: Table A, Delete ID = 2 -> 5
Server->>Client: Table A, Delete ID = 14 -> 20
Server->>Client: Table A, Update ID = [12, 16, 22]
Server->>Client: Table A, Insert ID = 24 -> 44
Server->>Client: Table A, Insert ID = 45 -> 60
Server->>Client: Table A, done
Server->>Client: Table B, Update ID = [123, 234]
Server->>Client: Table B, done
Client->>Server: Close

One of the downside of this method is that the server will have to compute and send over the list of deleted
rows on every request. We could compute the list of missing rows on the client and send it to the server so
that they may not be sent back, but it is putting more burden on the client than we probably might want.

5.1 A trigger-based approach
If we do not want to go through the trouble of adding a updated_at/deleted_at columns and triggers are
available in the database we’re using, then we could make use of this feature to record transactions occurring
on the tables we care about.

In this particular case, we have the choice between two designs: a log table per table of interest or a shared
log table between all tables.

5.1.1 One log table per table

id operation target_id
1 insert 1001
2 update 1002
3 delete 1003

id: operation identifier
operation: insert/update/delete operations
target_id: the id of the row in the given table

The log table for a table called table should be named table_log.

5.1.2 One shared log table

id table operation target_id
1 a insert 1001
2 b update 1002
3 c delete 1003

id: operation identifier
table: indicates the target table
operation: insert/update/delete operations
target_id: the id of the row in the given table

4

The interesting aspect of using log tables is that we can give its last ID to the server and the server will send
over its own log of transactions since that ID. The disadvantage is that we’re storing a lot of meta-data in
one or many log tables. As we’ve seen before, we do not particularly care about inserts and updates as we
could recover their information through other means (given we have an updated_at column).

What can be done to mitigate the need of having transaction logs on the client is to have the log(s) table(s)
only on the server. All the client would need to remember is the last transaction ID it has seen and the server
would send to the client all the rows it needs to insert/update/delete.

5.2 Two-way synchronization
In the previous section we’ve only been concerned with one-way synchronization between a client and its
server. It is a very useful approach for speeding up local querying and diminishing the load on the given
server. It would however be interesting to be able to use this database locally and to insert/update to it and
have these changes reflected on the server when they are synchronized.

This proves to be an immense challenge if we aren’t ready to update our tables schema. For one, if multiple
clients insert data in table A and synchronize with the server, their insert will collide. Which row should be
kept? Should only the last one be preserved or are all inserts valid? The same question can be asked about
updates. If one client increases the value of an entry in a row while another client decreases this same entry
and they synchronize with the server, which one should be preserved?

6 Distributed architecture
• Create a table of devices (id|device-identifier)
• Each device gets assigned a unique id
• Each row of each table is assigned a device id
• When syncing, the process is done sequentially (updating the oldest data first up to the newest)

– This assumes that no older data will get added by the remote device
• A table records the latest record that was inserted for each device and table (id|device_id|table)

7 See also

8 References
• Microsoft Sync Framework: https://msdn.microsoft.com/en-us/sync
• MySQL replication: http://dev.mysql.com/doc/refman/5.7/en/replication.html

5

	Context
	Learned in this study
	Things to explore
	Overview
	Things we'll assume
	Things we want
	Things we have to consider
	Client-Server architecture
	A trigger-based approach
	One log table per table
	One shared log table

	Two-way synchronization

	Distributed architecture
	See also
	References

