Set Theory
Created: January 15, 2016 / Updated: July 24, 2025 / Status: in progress / 4 min read (~761 words)
- $\aleph_0$ (aleph-0): Cardinality of $\mathbb{N}$
- $c$: Cardinality of $\mathbb{R}$
- $\aleph_0$ and $c$ are called transfinite numbers
- Sets of cardinality $\aleph_0$ are said countable
-
Sets of cardinality $c$ are said uncountable
- $E$: set
- $e$: element of E
- $e \in E$: $e$ is in the set $E$
- $e \not\in E$: $e$ is not in the set $E$
- card($E$) or $\#E$: cardinality of $E$
- $A \subset B$ when $A$ is in but not equal to $B$
- $A \subseteq B$ when $A$ is in or is equal to $B$
- Set: A set is a non-ordered collection of distinct objects.
- Element: An object of a set.
- Cardinality: The number of elements of a set.
- Empty set: A set which contains no element (written as $\varnothing$ or $\{\}$).
- Universal/Referential set: Reference set that allows construction of other sets in a specific context. Written $\Omega$ or $U$.
- Extension description: When the elements of a set are enumerated.
$$ E = \{2, 4, 6, 8, 10\}$$
- Comprehension description: When the elements of a set are specified by their properties.
$$ E = \{2n\ |\ n \in \mathbb{N}, 1 \le n \le 5\}$$
- Disjoints sets: Two sets are disjoint if their intersection is empty.
- Partition: $n$ sets form a partition of a set $E$ if they are disjoint to one another and their union is $E$.
$$ \begin{cases} F_1 \cup F_2 \cup\ ...\ \cup F_n& =& E \\ F_i \cap F_j = \varnothing& if& i \ne j \end{cases}$$
- Cartesian product: The set of all couples (a, b) that can be generated from the elements $a$ of $A$ and the elements $b$ of $B$.
$$ A \times B = \{(a, b)\ |\ a \in A, b \in B\}$$
$$ A_1 \times A_2 \times\ ...\ \times A_n = \{(a_1, a_2, ..., a_n)\ |\ a_i \in A_i\}$$
- If $E_1 = \varnothing$, then $\mathcal{P}(E_1) = \{\varnothing\}$
- If $E_2 = \{1\}$, then $\mathcal{P}(E_2) = \{\varnothing, \{1\}\}$
- If $E_3 = \{1, 2\}$, then $\mathcal{P}(E_3) = \{\varnothing, \{1\}, \{2\}, \{1, 2\}\}$
- If $E_4 = \{1, 2, 3\}$, then $\mathcal{P}(E_4) = \{\varnothing, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$
- $\mathbb{N} = \{0, 1, 3, 4, ...\}$ the set of natural numbers
- $\mathbb{Z} = \{..., 3, 2, 1, 0, 1, 2, 3, ...\}$ the set of integers
- $\mathbb{Q} = \{\frac{a}{b}\ |\ a \in \mathbb{Z}, b \in \mathbb{N}, b \not= 0\}$ the set of rational numbers
- $\mathbb{R}$ the set of real numbers (periodic decimal development)
- $\mathbb{I}$ the set of irrational numbers (non-periodic decimal development)
- $\mathbb{C} = \{a+bi\ |\ a, b \in \mathbb{R}, i^2 = -1\}$ the set of complex numbers
$$ \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$$
- $E_+ = \{x \in E\ |\ x \ge 0\}$
- $E_- = \{x \in E\ |\ x \le 0\}$
- $E_* = \{x \in E\ |\ x \ne 0\}$
- $E_+^* = \{x \in E\ |\ x \gt 0\}$
- $E_-^* = \{x \in E\ |\ x \lt 0\}$
- Difference: The elements of $E$ that are not in $F$.
$$ E \setminus F$$
$$ E \setminus F = \{x \in \Omega\ |\ (x \in E) \wedge (x \not\in F)\}$$
- Intersection: The elements that are common to $E$ and $F$.
$$ E \cap F$$
$$ E \cap F = \{x \in \Omega\ |\ (x \in E) \wedge (x \in F)\}$$
- Union: The elements that are either or both $E$ and $F$.
$$ E \cup F$$
$$ E \cup F = \{x \in \Omega\ |\ (x \in E) \vee (x \in F)\}$$
- Complement: The elements that are not in $E$.
$$ E^c\ or\ E'$$
$$ E^c = E' = \{x \in \Omega\ |\ (x \not\in E)\}$$
- $dom(I)$: index
- $I$: index set
- $ran(I)$: indexed set
- function: family
- value of the function $x$ at an index $i$: term of the family, denoted $x_i$
If $f$ is a function from $X$ to $Y$ and $g$ is a function from $Y$ to $Z$, then every element in the range of $f$ belongs to the domain of $g$, and, consequently, $g(f(x))$ makes sense for each $x$ in $X$. The function $h$ from $X$ to $Z$, defined by $h(x) = g(f(x))$ is called the composite of the functions $f$ and $g$; it is denoted by $g \circ f$.
To describe a set where the values are multiple of a value y, we say
$$ E = \{yx\ |\ x \in \mathbb{N}\}$$
Let $E = \{1, 2\}$,
$\mathcal{P}(E) = \{\varnothing, \{1\}, \{2\}, \{1, 2\}\}$
- $1 \in E$
- $\{1\} \not\in E$
- $1 \subset E$ (not valid, left part must be a set)
- $\{1\} \subset E$
- $1 \not\in \mathcal{P}(E)$
- $\{1\} \in \mathcal{P}(E)$
- $\{1\} \not\subset \mathcal{P}(E)$ (for the same reason * that $1 \not\in \mathcal{P}(E)$)
- $\{\{1\}\} \subset \mathcal{P}(E)$
- Bourbonnais, Daniel. Mathématiques pour les sciences. Montréal: Collège Ahuntsic; 2005.
- http://www.settheory.net/